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Molecular hydrophobicity (lipophilicity), usually quantified as logP (the logarithm of 1-octanol/water partition
coefficient), is an important molecular characteristic in drug discovery. ALOGP and CLOGP are two of the
most widely used methods for the estimation of logP. This work describes an extensive reparametrization
of the atomic logP values and a detailed comparison of the performance of ALOGP and CLOGP methods
on the Pomona Medchem database. Only the“star list” compounds having precisely measured logP values
were used in this analysis. While the overall results with both methods are similar, analysis shows that the
CLOGP method is better for very small molecules in the range of 1-20 atoms. The two methods are almost
comparable in the range of 21-45 atoms, while the ALOGP method has better accuracy for molecules with
more than 45 atoms. Although the rms deviation and the correlation coefficient for CLOGP predictions
were marginally better than those for corresponding ALOGP predictions, the latter showed a very stable
performance for all classes of organic compounds analyzed. The ALOGP method can be used to compute
estimates of most neutral organic compounds having C, H, O, N, S, Se, P, B, Si, and halogens. It also covers
most zwitterionic compounds having amine and carboxylic acids and ammonium halide salts. The CLOGP
method has improved considerably over the years to cover most neutral organic compounds, but it still has
some undefined fragments. Finally, unlike CLOGP and other methods of predicting lipophilicity, the ALOGP
method has multiple uses, such as the estimation of local hydrophobicity, the visualization of molecular
hydrophobicity maps, and the evaluation of hydrophobic interactions in protein-ligand complexes.

Introduction

The logarithm of the 1-octanol/water partition coefficient (log
P) is a well-known measure of molecular hydrophobicity (also
known as lipophilicity).1-4 It is used to assess biological
properties relevant to drug action, such as lipid solubility, tissue
distribution, receptor binding, cellular uptake, metabolism, and
bioavailability. Hansch5 pioneered the extensive use of this
parameter in developing variables for quantitative structure-
activity relationship (QSAR) equations. 1-Octanol is a natural
choice as the hydrophobic solvent in this respect because of its
physicochemical similarity to lipids, its ready availability, and
its ease of use.
The advent of high throughput synthesis and combinatorial

chemistry has created an increasing demand for fast methods
for the accurate assessment of logP and other relevant molecular
properties prior to organic synthesis. This is necessary to
achieve the maximal diversity of combinatorial libraries with a
minimum number of compounds. Tremendous efforts in the
past by theoretical and computational chemists led to several
useful computational methods for estimating logP values of
organic compounds.2,6-12 Among these, the CLOGP7 and the
ALOGP10,11,13methods are the most widely used, owing to two
fundamentally different reasons. The CLOGP7 method was
simply the first to be implemented in commercially available
software. The ALOGP method10,11,13 is a later development
but is easier to computerize. It not only yields reasonably
accurate estimates of logP values10,11,14but also is applicable
in several related areas of computational and medicinal chem-
istry, including 3D-QSAR applications,15-19 generation of
lipophilic surfaces of molecules,20-22 and evaluation of hydro-

phobic interactions in protein-ligand complexes.22 Though
very popular, the ALOGP method10,11,13has not been reparam-
etrized since its last revision in 1989.11

There have been some attempts in the literature to compare
various logP computational methods. However, these com-
parisons were made on small datasets by one of the original
authors, and the “best” method often turned out to be the
author’s own!14,23,24 A recent book4 provides an excellent
overview of the fundamentals and physical chemistry of
octanol-water partition coefficients containing experimental,
theoretical, and conceptual aspects. This book4 also collected
all the important works that dealt with the predictive perfor-
mance of various methods. However, even these reviewed
comparisons were based on limited datasets. Clearly, tests
should include all organic compounds with accurately deter-
mined logP values for a thorough and objective evaluation.
Furthermore, it is also important to classify the database into
organic subclasses such as aldehydes, ketones, and so forth, so
that the user can be aware of the quality of logP predictions
for each subclass. We, therefore, employed the largest available
database with accurately determined logP values (the star list
of the MedChem database25) and developed procedures for the
comparison of the two widely used methods: ALOGP10,11,13

and CLOGP.7 The objectives of the present work are to extend
and to reevaluate the ALOGP parameters to cover neutral
organic molecules of medicinal interest and some charged
compounds including unblocked peptides including the amino
acids, using a large database of compounds, and to present an
analysis of the ALOGP and CLOGP methods that can be a
benchmark for evaluating such computational methods.
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TABLE 1: Classification of Atoms and Their Contributions to Octanol-Water Partition Coefficient as a Measure of
Hydrophobicity

type descriptiona
hydro-

phobicityb
no. of
compds

no. of
freq of
use type descriptiona

hydro-
phobicityb

no. of
compds

no. of
freq of
use

C in N in
1 :CH3R, CH4 -1.5603 4088 7642 66 :Al-NH2 -0.5427 138 141
2 :CH2R2 -1.0120 2941 7639 67 :Al2NH -0.3168 166 169
3 :CHR3 -0.6681 848 1406 68 :Al3N 0.0132 457 481
4 :CR4 -0.3698 403 527 69 :Ar-NH2, X-NH2 -0.3883 687 859
5 :CH3X -1.7880 2279 3463 70 :Ar-NH-Al -0.0389 196 239
6 :CH2RX -1.2486 3529 6957 71 :Ar-NAl2 0.1087 198 218
7 :CH2X2 -1.0305 156 162 72 :RCO-N<, >N-XdX -0.5113 3717 5526
8 :CHR2X -0.6805 1640 2846 73 :Ar2NH, Ar3N 0.1259 1251 1264
9 :CHRX2 -0.3858 301 315 :Ar2N-Al, R‚‚‚N‚‚‚Rf

10 :CHX3 0.7555 30 30 74 :RtN, RdN- 0.1349 1070 1293
11 :CR3X -0.2849 436 508 75 :R- -N- -R,gR- -N- -X -0.1624 1927 3083
12 :CR2X2 0.0200 82 96 76 :Ar-NO2. R- -N(- -R)- -Oh -2.0585 867 969
13 :CRX3 0.7894 275 305 RO-NO,
14 :CX4 1.6422 44 44 77 :Al-NO2 -1.9150 21 21
15 :dCH2 -0.7866 134 153 78 :Ar-NdX, X-NdX 0.4208 270 392
16 :)CHR -0.3962 794 1307 79 :N+ (positively charged) -1.4439 189 189
17 :dCR2 0.0383 444 530 80 unused - - -
18 :dCHX -0.8051 260 286 F attached to
19 :dCRX -0.2129 314 417 81 :C1sp3 0.4797 107 115
20 :dCX2 0.2432 57 59 82 :C2sp3 0.2358 30 84
21 :tCH 0.4697 72 88 83 :C3sp3 0.1029 289 893
22 :tCR, RdCdR 0.2952 77 79 84 :C1sp2 0.3566 278 341
23 :tCX - - - 85 :C2-4

sp2, C1sp, C4sp3, X 0.1988 18 22
24 :R- -CH- -R -0.3251 6046 27607 Cl attached to
25 :R- -CR- -R 0.1492 4086 6356 86 :C1sp3 0.7443 154 253
26 :R- -CX- -R 0.1539 4328 8624 87 :C2sp3 0.5337 41 76
27 :R- -CH- -X 0.0005 1010 1384 88 :C3sp3 0.2996 58 195
28 :R- -CR- -X 0.2361 860 1089 89 :C1sp2 0.8155 1044 1939
29 :R- -CX- -X 0.3514 545 653 90 :C2-4

sp2, C1sp, C4sp3, X 0.4856 121 145
30 :X- -CH- -X 0.1814 152 154 Br attached to
31 :X- -CR- -X 0.0901 133 146 91 :C1sp3 0.8888 36 43
32 :X- -CX- -X 0.5142 296 429 92 :C2sp3 0.7452 4 5
33 :R- -CH‚‚‚X -0.3723 428 478 93 :C3sp3 0.5034 6 15
34 :R- -CR‚‚‚X 0.2813 673 789 94 :C1sp2 0.8995 213 257
35 :R- -CX‚‚‚X 0.1191 302 314 95 :C2-4

sp2, C1sp, C4sp3, X 0.5946 29 35
36 :Al-CHdX -0.1320 39 39 I attached to
37 :Ar-CHdX -0.0244 115 115 96 :C1sp3 1.4201 10 12
38 :Al-C(dX)-Al -0.2405 55 65 97 :C2sp3 1.1472 1 2
39 :Ar-C(dX)-R -0.0909 434 492 98 :C3sp3 - - -
40 :R-C(dX)-X, R-CtX, XdCdX -0.1002 4126 5998 99 :C1sp2 0.7293 83 116
41 :X-C(dX)-X 0.4182 1399 1527 100 :C2-4

sp2, C1sp, C4sp3, X 0.7173 15 17
42 :X- -CH‚‚‚X -0.2147 381 383 halide ions
43 :X- -CR‚‚‚X -0.0009 247 261 101 :fluoride ion - - -
44 :X- -CX‚‚‚X 0.1388 205 261 102 :chloride ion -2.6737 3 3
45 unused - - - 103 :bromide ion -2.4178 1 1

H attached toc 104 :iodide ion -3.1121 2 2
46 :C0sp3 having no X attached to next C 0.7341 2870 19673 105 unused - - -
47 :C1sp3, C0sp2 0.6301 7785 53484 S in
48 :C2sp3, C1sp2, C0sp 0.5180 1056 1370 106 :R-SH 0.6146 23 27
49 :C3sp3, C2-3

sp2, C1-3
sp -0.0371 1599 2247 107 :R2S, RS-SR 0.5906 675 774

50 :heteroatom -0.1036 5456 10957 108 :RdS 0.8758 204 211
51 :R-Cd 0.5234 3072 8801 109 :R-SO-R -0.4979 58 59
52 :C0sp3, having 1 X attached to next carbon 0.6666 2891 13030 110 :R-SO2-R -0.3786 560 631
53 :C0sp3, having 2 X attached to next carbon 0.5372 370 952 Si in
54 :C0sp3, having 3 X attached to next carbon 0.6338 79 164 111 :>Si< as in silicones 1.5188 11 11
55 :C0sp3, having 4 or more X attached to next

carbon
0.3620 2 4 B in

O in 112 :>B- as in boranes 1.0255 2 2
56 :alcohol -0.3567 953 1477 113-114 unused -
57 :phenol, enol, carboxyl OH -0.0127 1048 1239 P in
58 :dO -0.0233 5138 8248 115 :ylids - - -
59 :Al-O-Al -0.1541 575 821 116 :R3-PdX -0.9359 2 2
60 :Al-O-Ar, Ar2O 0.0324 2924 4188 117 :X3-PdX (phosphate) -0.1726 131 132

:R‚‚‚O‚‚‚R, R-O-CdX 118 :PX3 (phosphite) -0.7966 3 3
61e :- -O 1.0520 902 1928 119 :PR3 (phosphine) 0.6705 2 2
62 :O- (negatively charged) -0.7941 182 363 120 :C-P(X)2dX (phosphonate) -0.4801 20 20
63 :R-O-O-R 0.4165 8 16

Se in
64 :Any-Se-Any 0.6601 6 6
65 :dSe - - -

aR represents any group linked through carbon; X represents any heteroatom (O, N, S, P, Se, and halogens); Al and Ar represent aliphatic and
aromatic groups, respectively;d represents a double bond;t represents a triple bond; - - represents a aromatic bonds as in benzene or delocalized
bonds such as the N-O bond in a nitro group;‚‚‚ represents aromatic single bonds as the C-N bond in pyrrole.b Atomic hydrophobicity in the
unit of logP(octanol-water).c The subscript represents hybridization and the superscript its formal oxidation number. The formal oxidation number
of a carbon atom equals the sum of the formal bond orders with electronegative atoms; the C- -N bond order in pyridine may be considered as 2
while we have one such bond and 1.5 when we have two such bonds; the C‚‚‚X bond order in pyrrole or furan may be considered as 1.d An R-C
may be defined as a C attached through a single bond with-CdX, -CtX, -C- -X. eAs in nitro,N-oxides.f Pyrrole-type structure.g Pyridine-
type structure.h PyridineN-oxide type structure.
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Computational Methodology

Computational methods developed and applied in the present
work are directed toward two tasks: first, development of new
parameters for the ALOGP method; second, comparison of the
ALOGP and CLOGP methods. The atom types used in the
ALOGP method have been discussed extensively in the
literature.10,11,14,20 The present work uses the same atom types,
with additions for boron, silicon, charged oxygen as in a
carboxylate, and charged nitrogen as in Lys and halide ions.
These atom types are shown in Table 1. Developing new
parameters for these types entails the following: (i) collection
of reliable experimental values of logP for common organic
compounds along with their chemical structure; (ii) interpretation
and conversion of the structures suitable for graphical display
and atom type classification according to the scheme presented
in Table 1; (iii) division of the compounds into two sets,training
and test; (iv) evaluation of the atomic parameters using linear
regression analysis from the training set; and (v) evaluation of
the fitted (training) or predicted (test) logP values from the
atomic parameters. Comparison of the ALOGP and CLOGP
methods involves classification of the logP database by the
criteria of organic structural class (aldehydes, heterocyclic
aromatics, etc.) and molecular size, followed by the calculation
of statistical parameters for each of the subclasses and com-
parison of statistical results. These steps are discussed below.
1. New Parameters for the ALOGP Method. (i) Molec-

ular Database. The largest compilation of experimentally
determined logP values of organic compounds known today is
a result of the extensive efforts of Hansch and Leo.2 The
Pomona Medchem Database25 consists of the experimental log
P values of nearly 30 000 compounds along with the structural
information in SMILES notation.26 A subset of approximately
9000 compounds, with very accurately determined logP values,
forms the star list.25 A text (ASCII) version of the star list
database was used for extracting the measured logP values and
SMILES26 strings for the structures.

(ii) Structural Interpretation.The star list structures encoded
in the SMILES notation were first converted to 3D molecular
structures using the 2D-to-3D converter module of Galaxy.27

During this process, Galaxy also classified the atom types
according to Table 1. An accurate atom classification procedure
is the key to the success of the ALOGP method, and hence, the
atom type classification of Galaxy was thoroughly checked for
its correctness. Errors may come either from the misinterpreta-
tion of the atom notation in Table 1 or from the bond type
representation in ambiguous structures. Galaxy,27 for example,
did not interpret theN-oxides properly, since it expected the
N-O bond type to be delocalized; however, it was represented
as a double bond in the SMILES-encoded star list database.
Such structures were identified using the substructure search
options in Galaxy, and the corresponding bond types were
corrected. Azulenes were classified as aliphatic; although the
database had only a few azulenes to make a definite conclusion,
we feel that they are best represented as aromatic. All of the
other organic compounds were interpreted properly, as ascer-
tained by manual cross-checking of a large number of com-
pounds using MaclogP.28 Most other atom types shown in Table
1 are assigned in a straightforward manner, since they are
determined both by their orbital hybridization state and by the
atoms directly attached to them. Since, in an organic molecule,
hydrogen is a recurring constituent of its solvent accessible
surface, its classification was done by considering the nature
of the directly attached atom and that of the neighbor of its
direct attachments to account for the inductive polarization of
the C-H bond. Some of the hydrogen atom types (46-55)
are illustrated in greater detail in Figure 1. The subscript on
the carbon to which the hydrogen is attached represents its
formal oxidation number, which in turn may be considered as
the number of electronegative atoms attached to it. The junction
atoms in polynuclear heterocyclic rings are also classified
uniquely by prioritizing the pyridine-type ring over the pyrrole-
type ring over the benzene ring. For example, the junction

Figure 1. Description of various types of hydrogen. R1 ) H or CA3 where A) C or H, X ) any electronegative atom, R3 ) C or H or X. For
atom types 53-55, the electronegative atom may be attached to the same or different carbon atom (as shown above).

TABLE 2: Comparative Evaluation of ALOGP (Current and Old Parameters) and CLOGP Methods for the Training a and
Test Set

data set method of calc correl coeff rms dev max dev min dev max logP min logP predictiver2 no. of data points

train CLOGP 0.96 0.50 4.58 0.00 9.96 -4.41 0.91 8141
ALOGP 0.95 0.55 3.66 0.00 9.96 -4.41 0.90 8364
ALOGP (old)b 0.91 0.73 4.68 0.00 9.96 -4.41 0.81 8364

test CLOGP 0.96 0.51 3.46 0.00 9.07 -3.15 0.91 912
ALOGP 0.95 0.55 2.75 0.00 9.07 -3.52 0.90 931
ALOGP (old) 0.91 0.75 4.24 0.00 9.07 -3.52 0.81 931

a The explained variance of the regression analysis) 0.895. The definition and necessity of the use ofexplainedVariancehave been described
in Purcell, W. P.; Bass, G. E.; Clayton, G. E.Strategy of Drug: A Guide to Biological ActiVity; Wiley: New York, 1973; p 23.b The parameters
for the four new atom types were taken from the new parameter set.
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atoms in quinolines belong to type 28, and not to type 26. For
larger cyclic structures, the ring atoms were classified as
aliphatic systems. However, the absence of measured logP
values of such systems in the current dataset did not justify
such classification.
(iii) Training and Test Sets.The whole molecular dataset

was divided into two subsets, training and test. The test set
constituted every tenth molecule of the full dataset. The training
set was the remaining 90% of the compounds. The objectives
here are to use the training set to evaluate the atomic logP
parameters and to use the test set to evaluate its predictive
power. Both the training and the test sets were converted to a
Galaxy 3D molecular databases along with the measured logP
and CLOGP estimated values obtained from the logP master
database.
(iv) Parameter Evaluation. The atomic logP parameters

were determined from the general eq 1

whereni is the number of atoms of typei andai is the atomic
log P contribution. The tabulation of data of this massive
regression was done via the 2D-QSAR module of Galaxy.27 A
generalized inversion method29 was used to evaluate the least
squares solutions of the atomic parameters.
2. Comparison of the ALOGP and CLOGP Methods and

Results. (i) Classification of the Star List Database.A detailed
examination of the star list database showed that it is quite
comprehensive in representing all of the organic functional
groups of interest in medicinal chemistry. Twenty types of
organic and bio-organic functional groups, ubiquitous in the
medicinal chemistry literature, have been identified from this
database for the purpose of the present comparisons. These
are carboxylic acids, alcohols, aldehydes, aliphatic primary
amines, aliphatic secondary amines, aliphatic tertiary amines,
unblocked peptides including the amino acids, aromatic primary
amines, aromatic secondary amines, aromatic tertiary amines,
carboxamides, imidazoles, ketones,N-oxides, nitro compounds,
nucleosides, phenols, pyridines, pyrimidines, and pyrroles.
Clearly, multifunctional compounds belong to more than one
class, and hence, the structural classes do overlap. Nevertheless,
a classification of this kind is useful in qualitatively delineating
the shortcomings of a method in terms of specific structural

classes. Since atomic/fragment contribution methods assume
additivity of log P, it is important to explore the limits of the
additivity approximation. It stands to reason that high molecular
weight compounds that are conformationally flexible (e.g.,
peptides) will be harder to model using the additivity assump-
tion. Therefore, we classified the database into 11 subclasses
(bins) on the basis of the molecular size (total number of atoms
in a molecule) for performance evaluation.
(ii) Statistical Parameters for the Assessment of logP

Models. To assess the calculated logP values from the two
models, we used the Pearson correlation coefficient (R), rms
deviation, maximum and minimum deviations for each set, and
“predictive r2”.30 These parameters were calculated for the
overall training and test sets as well as for each subclass of
molecules described earlier.
Predictiver2 30 measures the quality of predictions relative

to a simple “no model” guess, the average of all experimental
log P values for a given set of molecules. This is given by

where SD is the sum of squared deviations of each measured
log P value from their mean, and “press” is the predictive sum
of squared differences (the sum of squared differences between
the actual and predicted logP values). Negative values for
predictiver2 indicate that logP is better estimated by the “mean
of values” rather than by the model under consideration. The
ALOGP values as obtained from the regression analysis for the
training set and the calculated CLOGP values of molecules in
the star list were appended to the molecular databases (training
and test) devised earlier for the analysis of the properties. The
ALOGP values of the test set were evaluated from the database
module after replacing the original atomic hydrophobicity
parameter file of Galaxy software by the current values.

Results and Discussion

New Parameters for the ALOGP Method. The atom
classification scheme shown in Table 1 is an attempt to discretize
the electronic effects, solvent accessibility, and so forth of an
atom from a topological consideration. These properties are
the most critical in determining the relative contribution of
different atom types to logP for small organic molecules with
relatively few degrees of freedom. Thus, the atomic parameters

Figure 2. The representation of the substructures searched for the comparative analysis of the ALOGP and CLOGP methods. In these structures,
the atoms are C unless otherwise indicated. “A” represents any element; in the Galaxy software, this is equivalent to picking only the bond and not
the atom.

logP) ∑
i

niai (1)

predictiver2 ) (SD- “press”)/SD (2)
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shown in Table 1 represent the atomic contributions to logP
and may be considered as atomic measures of hydrophobicity.
Table 1 also shows the number of compounds that contain the
corresponding atom type and the total number of occurrences
of each atom type in the database. Data shown in Table 1 were
obtained from a regression model based on 8364 molecules,
covering a large variety of organic structures. The statistics of
this analysis are shown in Table 2. The reliability of the atomic
parameters is evident from the high correlation coefficient,
predictiver2, and other statistics obtained for both the training
and the test sets.
It is noteworthy that the old set of atomic parameters gave a

good correlation (r ) 0.91) and a reasonable standard deviation
(rms ) 0.73 and 0.75 for the training and and test sets,
respectively) with the star list database. However, all statistical
parameters calculated using the new atomic parameters im-
proved significantly relative to those calculated using the old
parameters. The sign of atomic values for the carbon types is
consistent with previous studies, with a few exceptions (types
17, 20, 21, 35, and 37). In these cases, the number of
observations was small (10 or less) in the previous database,
explaining the change of hydrophobic character of these types.
Atomic values of types 40 and 43 are close to zero in both new
and old parameter sets. Hence, the change of sign in these cases
is not important. Notably, the sign of the atomic values for all
hydrogen types is unchanged from the previous set. Notably,
the hydrogen attached to a heteroatom is less hydrophilic in
the present set. In the old set, heteroatoms bonded to hydrogen
(types 56, 57, 66, 67, 69, and 70) were given positive atomic

values. In the present set, more realistically, they are all
represented with negative values, distributing the hydrophilic
character of polar groups such as hydroxyls and amines, to both
hydrogens and heteroatoms. A similar redistribution of hydro-
philic character is also seen in the cases of phosphates and
phosphanates, changing the sign of atomic values (types 117
and 120) in these cases. Hydrophobicity values for halides in
the present set are quite similar to those of the previous set.
We made an effort to assign atomic values to ionic halides,
despite their low level of occurrence in the star list database
(types 101-103). In the case of bromide ion (type 103), with
a solitary occurrence in the database, the derived atomic value
is not a statistically valid parameter. A physically more realistic
value may be the average of chloride and iodide atomic values,
which is -2.8929. More experimental values for such ions
would allow a better assignment of the ALOGP parameters.
Since hydrogen types (46-49 and 51-55) are always bonded

to carbons, the “negative” contribution of carbons may not be
very important, as the hydrocarbon surface will always be
represented as hydrophobic. Compared to the previous set of
parameters, some of the carbon atom types appear to have a
more negative hydrophobicity, while the hydrogens have more
positive values. However, the logP contribution of a methyl
group in a hydrocarbon chain remains virtually unaffected:
0.642 (current), 0.648 (previous). Substituting a non-hydrogen
atom for hydrogen on a saturated carbon can have two effects.
If the non-hydrogen atom is a carbon, the substitution increases
the overall hydrophobicity. If the non-hydrogen atom is an
electronegative atom, it decreases the hydrophobicity for a single

TABLE 3: Comparative Evaluation of ALOGP and CLOGP Methods among Various Classes of Organic Compounds for the
Training Seta

compd type method of calc correl coeff rms dev max dev min dev max logP min logP predictiver2 no. of data points

carboxylic acid (I) CLOGP 0.97 0.36 2.28 0.00 6.30 -2.60 0.93 448
ALOGP 0.93 0.52 1.90 0.00 6.30 -2.60 0.86 456

alcohol (II) CLOGP 0.94 0.81 4.58 0.00 8.42 -3.70 0.79 880
ALOGP 0.96 0.52 3.17 0.00 8.42 -3.70 0.91 889

aldehyde (III) CLOGP 0.95 0.45 1.60 0.00 8.02 -0.10 0.89 36
ALOGP 0.97 0.41 1.37 0.00 8.02 -0.10 0.91 36

aliphatic primary amine (IV) CLOGP 0.91 0.79 2.57 0.00 8.38 -4.41 0.82 274
ALOGP 0.95 0.57 2.85 0.00 8.38 -4.41 0.90 274

aliphatic secondary amine (V) CLOGP 0.95 0.52 2.25 0.00 4.90 -4.00 0.90 140
ALOGP 0.97 0.41 1.25 0.00 4.90 -4.00 0.94 143

aliphatic tertiary amine (VI) CLOGP 0.95 0.57 2.39 0.00 7.57 -3.80 0.89 297
ALOGP 0.94 0.60 2.30 0.00 7.57 -3.80 0.88 308

peptides (VII)b CLOGP 0.81 1.00 2.57 0.00 1.63 -4.41 -0.08 148
ALOGP 0.85 0.62 2.85 0.01 1.63 -4.41 0.58 148

aromatic primary amine (VIII) CLOGP 0.93 0.51 2.07 0.00 5.08 -2.20 0.82 480
ALOGP 0.90 0.54 3.01 0.00 5.08 -2.20 0.80 482

aromatic secondary amine (IX) CLOGP 0.94 0.55 1.55 0.01 5.18 -0.80 0.83 59
ALOGP 0.94 0.52 1.14 0.06 5.18 -0.80 0.85 59

aromatic tertiary amine (X) CLOGP 0.87 0.67 4.42 0.00 5.34 -0.90 0.73 104
ALOGP 0.91 0.54 1.54 0.00 5.34 -0.90 0.82 104

carboxamide (XI) CLOGP 0.94 0.57 2.57 0.00 5.66 -3.51 0.88 1077
ALOGP 0.94 0.55 2.85 0.00 5.66 -3.51 0.89 1129

imidazole (XII) CLOGP 0.95 0.63 3.34 0.00 6.06 -3.56 0.85 508
ALOGP 0.96 0.49 3.66 0.00 6.06 -3.56 0.91 510

ketone (XIII) CLOGP 0.91 0.62 3.71 0.00 7.57 -2.10 0.80 434
ALOGP 0.89 0.65 2.34 0.00 7.57 -2.10 0.78 441

N-oxides (XIV) CLOGP 0.80 0.98 2.91 0.00 3.65 -1.40 -0.01 63
ALOGP 0.87 0.69 1.40 0.01 3.65 -1.40 0.49 64

nitro (XV) CLOGP 0.94 0.53 3.34 0.00 5.29 -1.59 0.84 798
ALOGP 0.91 0.55 3.66 0.00 5.29 -1.59 0.83 836

nucleoside (XVI) CLOGP 0.78 1.12 2.24 0.15 1.35 -1.89 -1.82 43
ALOGP 0.83 0.40 1.20 0.00 1.35 -1.89 0.65 43

phenol (XVII) CLOGP 0.94 0.57 3.71 0.00 9.96 -3.51 0.89 491
ALOGP 0.93 0.64 2.48 0.00 9.96 -3.51 0.86 494

pyridine (XVIII) CLOGP 0.95 0.42 2.71 0.00 7.00 -2.44 0.89 379
ALOGP 0.92 0.52 2.27 0.00 7.00 -2.44 0.83 380

pyrimidine (XIX) CLOGP 0.91 0.69 2.24 0.00 5.70 -1.42 0.69 247
ALOGP 0.92 0.51 1.75 0.00 5.70 -1.42 0.83 247

pyrrole (XX) CLOGP 0.93 0.55 2.08 0.00 6.40 -2.21 0.84 129
ALOGP 0.93 0.54 1.54 0.00 6.40 -2.21 0.85 129

a See Figure 2 for the substructures that were searched in different chemical classes.bUnblocked peptides including the amino acids.
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substitution because of two opposing effects, polarization and
shielding. In the case of aromatic carbons, any substitution
involving carbon or heteroatoms shows increased hydrophobic-
ity. As expected, most oxygen and nitrogen atom types show
negative hydrophobicity. Zwitterionic unblocked peptides
including the amino acids, were the main source of logP values
for the estimation of atomic parameters for charged oxygen and
nitrogen types. The two types (O- and N+) occur in pairs in
most cases. In other words, these two variables are linearly
dependent, and there is no clear mathematical basis by which
to assign their individual hydrophobicity contribution. One way
to separate these variables may be to study the logP values of
a sufficient number of sodium carboxylates and ammonium
halides. In the absence of such a dataset, we used the relative
solvation free energies31 of acetate and ammonium ions as a
guide in estimating theirrelatiVehydrophobicity contributions.
Comparison of the Performance of CLOGP and ALOGP

Methods. A major objective of this work is to make an
unbiased and comprehensive comparison of the performance
of the ALOGP and CLOGP methods. In addition to the usual
statistical parameters, the rms deviation and the Pearson
correlation coefficient, we used several others in different sets
of compounds to compare their performance. These statistics
are shown in Tables 2-6. One should be aware that the
performance of the two methods is best judged from the test
set results and not from those of the training set. In the training
set, one can easily increase the number of independent variables
and improve the statistics. However, that would decrease the
predictive power of the method because several of the inde-

pendent variables would then be under-represented. Over the
years the number of fragment and correction factors used in
the CLOGP method has grown considerably. In the early
publications, this number was slightly larger than 200, but the
current number is not available in the literature. However, this
number may not be directly comparable with the number of
independent variables used in the ALOGP method because, in
the CLOGP method, the fragmental constants and correction
factors are not derived by the usual regression procedures for
the entire database but are obtained incrementally for different
series with periodic alterations for the old values as indicated
by new logP data. A detailed comparison of the training and
test set results is possible only for the ALOGP method here, as
the training and test subsets for the CLOGP method were not
available to us. Also, the number of fragments and correction
factors used in the current version of CLOGP is not available
in the literature. Therefore, the statistical parameters shown in
Tables 2-6 (training versus test) should be interpreted with
caution. The overall statistics of the study for the training and
test sets are shown in Table 2. Notably, the number of data
points (molecules) used for the two methods differed, since the
CLOGP method failed to evaluate the logP values for a number
of cases both in the training and test sets. The correlation
coefficient, rms deviation, and predictiver2 for the CLOGP
method are marginally better than those for the ALOGPmethod,
whereas the maximum deviation (max dev) is greater for the
CLOGP method (training or test). The statistics remained
almost unchanged for the training and test sets for either method.

TABLE 4: Comparative Evaluation of ALOGP and CLOGP Methods among Various Classes of Organic Compounds for the
Test Seta

compd type method of calc correl coeff rms dev max dev min dev max logP min logP predictiver2 no. of data points

carboxylic acid (I) CLOGP 0.95 0.43 1.52 0.00 6.06 -1.26 0.88 61
ALOGP 0.92 0.54 2.19 0.01 6.06 -1.26 0.80 61

alcohol (II) CLOGP 0.95 0.84 3.46 0.01 5.76 -3.02 0.80 100
ALOGP 0.97 0.42 1.24 0.00 5.76 -3.02 0.95 100

aldehyde (III) CLOGP 0.99 0.13 0.21 0.00 1.76 -0.01 0.96 5
ALOGP 0.89 0.39 0.54 0.08 1.76 -0.01 0.64 5

aliphatic primary amine (IV) CLOGP 0.84 0.92 2.37 0.00 3.54 -3.15 0.67 30
ALOGP 0.94 0.57 1.17 0.00 3.54 -3.15 0.87 30

aliphatic secondary amine (V) CLOGP 0.97 0.45 1.35 0.08 4.17 -2.56 0.93 20
ALOGP 0.98 0.36 0.70 0.03 4.17 -2.56 0.95 20

aliphatic tertiary amine (VI) CLOGP 0.95 0.43 1.09 0.01 5.76 0.64 0.90 24
ALOGP 0.92 0.53 1.27 0.02 5.76 0.64 0.85 24

peptides (VII)b CLOGP 0.73 1.12 2.37 0.14 -0.78 -3.15 -2.17 19
ALOGP 0.85 0.68 1.17 0.15 -0.78 -3.15 -0.19 19

aromatic primary amine (VIII) CLOGP 0.94 0.50 1.33 0.02 4.31 -0.96 0.85 47
ALOGP 0.92 0.58 1.62 0.01 4.31 -3.52 0.85 48

aromatic secondary amine (IX) CLOGP 0.97 0.81 1.41 0.02 2.99 -0.89 0.65 9
ALOGP 0.97 0.37 0.64 0.05 2.99 -0.89 0.93 9

aromatic tertiary amine (X) CLOGP 0.94 0.45 0.92 0.03 4.41 0.03 0.87 11
ALOGP 0.94 0.48 1.11 0.15 4.41 0.03 0.85 11

carboxamide (XI) CLOGP 0.94 0.60 2.37 0.00 3.92 -3.15 0.881 26
ALOGP 0.95 0.53 1.47 0.01 4.24 -3.15 0.91 128

imidazole (XII) CLOGP 0.94 0.89 2.73 0.00 4.96 -2.47 0.75 48
ALOGP 0.98 0.40 1.31 0.00 4.96 -2.47 0.95 49

ketone (XIII) CLOGP 0.96 0.58 1.52 0.03 9.07 0.30 0.89 21
ALOGP 0.95 0.53 1.06 0.01 9.07 0.30 0.91 21

N-oxide (XIV) CLOGP 0.83 0.90 2.50 0.01 3.64 -0.88 0.42 8
ALOGP 0.88 0.87 1.23 0.26 3.64 -0.88 0.47 8

nitro (XV) CLOGP 0.94 0.68 2.73 0.00 4.53 -1.59 0.72 90
ALOGP 0.88 0.62 1.66 0.01 4.53 -1.59 0.75 96

nucleoside (XVI) CLOGP 0.90 1.17 2.02 0.38 0.95 -1.30 -0.39 4
ALOGP 0.97 0.25 0.31 0.09 0.95 -1.30 0.9 44

phenol (XVII) CLOGP 0.90 0.76 3.46 0.00 4.82 -1.77 0.77 58
ALOGP 0.93 0.64 2.19 0.03 4.82 -1.77 0.84 58

pyridine (XVIII) CLOGP 0.97 0.29 0.75 0.00 3.27 -0.65 0.93 37
ALOGP 0.88 0.51 1.59 0.01 3.27 -0.65 0.76 37

pyrimidine (XIX) CLOGP 0.91 0.58 1.15 0.03 2.61 -0.05 0.48 12
ALOGP 0.90 0.49 1.03 0.06 2.61 -0.05 0.63 12

pyrrole (XX) CLOGP 0.86 0.73 1.52 0.00 5.43 0.71 0.73 10
ALOGP 0.93 0.56 1.12 0.05 5.43 0.71 0.84 10

a See Figure 2 for the substructures that were searched in different chemical classes.bUnblocked peptides including the amino acids.
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The whole dataset was then searched for various types of
common organic functional groups shown in Figure 2, and the
results for each subclass were then separately analyzed. Clearly,
this type of analysis is helpful to the user to decide what is the
most appropriate method for a given subclass or to point to the
limitations of a given method. The results of this analysis are
shown in Table 3 (training set), Table 4 (test set), and Figure 3
(training set). The number of compounds in some classes of
the test set is indeed small. If the statistics of the fit for such
classes are different from the training set, the reader may rely
on the corresponding results of Table 3. It is seen that the
ALOGP method gives a more stable performance relative to
CLOGP when all the different structural classes are considered.
Thus, the CLOGP method results in rms deviations greater than
0.65 in seven subclasses (alcohols, aliphatic primary amines,
unblocked peptides, including the amino acids, aromatic tertiary
amines,N-oxides, nucleosides and pyrimidines). Except for
N-oxides, none of the structural classes shows rms deviations
greater than 0.65 in the case of the ALOGP method. With
CLOGP, predictiver2 is negative for unblocked peptides,

including the amino acids and nucleosides, indicating that this
method in its current version may not be generally applicable
to bio-organics. By the criterion of predictiver2, most organic
structural classes are reasonably well-predicted by both methods.
The latest version of CLOGP as available in MacLogP (v 2.03),
gives vastly better values forN-oxides than the previous CLOGP
version (results shown in Tables 3-6). These results are
summarized in the footnote of Figure 3. The maximum
deviation (max dev) in Tables 3-6 is an indication of how far
a really poor prediction can deviate from the measured value.
For most structural classes, this parameter is higher with the
CLOGP method. This parameter is most often 4 to 5 times the
rms deviation. If the same set of compounds was poorly
predicted by both methods, it would be indicative of either a
problem in measuring the logP values experimentally or a
problem in structural representation (for example, neglect of
tautomeric structure or of acid/base behavior). Picking poorly
predicted compounds is often relative to the magnitude of the
measured value. A deviation of 1.5, for example, for a
compound with a logP value of 8.0 may not seem very bad.

Figure 3. A comparative evaluation of the ALOGP and CLOGP methods among various classes of organic compounds in the training set. Dr. A
Leo of Pomona College recently showed us that his MaclogP program, version 2.03, does a better job for theN-oxides. For 82 data points, it
showed 0.96 correlation coefficient, 0.2 rms deviation, and 0.92 predictiver2. The master database that we analyze here is compatible with the
MaclogP version 2.0.

TABLE 5: Comparative Evaluation of ALOGP and CLOGP Methods for Molecules, Classified by the Total Number of Atoms
in the Training Set

atom range method of calc correl coeff rms dev max dev min dev max logP min logP predictiver2 no. of data points

0-15 CLOGP 0.98 0.31 1.73 0.00 6.07 -3.21 0.96 822
ALOGP 0.95 0.50 1.86 0.00 6.07 -3.21 0.90 831

16-20 CLOGP 0.97 0.32 2.37 0.00 6.42 -4.00 0.94 1406
ALOGP 0.93 0.48 1.71 0.00 6.42 -4.00 0.86 1419

21-25 CLOGP 0.98 0.41 2.97 0.00 9.14 -4.41 0.95 1657
ALOGP 0.96 0.52 2.85 0.00 9.14 -4.41 0.92 1698

26-30 CLOGP 0.96 0.47 2.39 0.00 7.54 -4.20 0.91 1388
ALOGP 0.94 0.54 3.17 0.00 7.54 -4.20 0.88 1427

31-35 CLOGP 0.95 0.53 2.91 0.00 6.63 -3.09 0.87 977
ALOGP 0.93 0.54 2.73 0.00 6.63 -3.09 0.86 1007

36-40 CLOGP 0.95 0.53 2.59 0.00 7.10 -3.51 0.89 599
ALOGP 0.94 0.57 3.01 0.00 7.10 -3.51 0.88 619

41-45 CLOGP 0.95 0.62 2.43 0.00 5.85 -3.70 0.86 478
ALOGP 0.94 0.60 2.64 0.00 5.85 -3.70 0.87 495

46-50 CLOGP 0.94 0.68 2.28 0.00 6.30 -2.33 0.83 264
ALOGP 0.94 0.61 2.11 0.01 6.30 -2.33 0.86 276

51-55 CLOGP 0.96 0.71 3.00 0.00 7.41 -2.64 0.90 208
ALOGP 0.96 0.64 2.10 0.00 7.48 -2.64 0.92 222

56-60 CLOGP 0.96 0.82 4.20 0.00 8.06 -3.05 0.91 121
ALOGP 0.96 0.72 2.91 0.00 8.06 -3.05 0.93 134

60+ CLOGP 0.88 1.11 4.58 0.00 9.96 -2.82 0.75 221
ALOGP 0.93 0.79 3.66 0.00 9.96 -2.82 0.86 236
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However, such a deviation for a molecule with logP close to
0.0 may seem very bad. We tried to analyze the compounds
with deviations greater than 2.0 in either method. In the process,
we detected a few structural problems. For example, the anions
of a few pyridinium salts were not represented in the SMILES
strings. These poorly predicted compounds in these two
methods are shown in Tables 7 and 8. The number of such
bad compounds is only 29 for the ALOGP method (Table 7),
while that number for the CLOGP method is 62. Methanetri-
carboxamide hexamethyl (compound10 in Table 7 or compound
41 in Table 8) is possibly acidic, and the measured logP value
is probably not corrected for its ionization state. Overall, the
number of common compounds in the two lists is not high. This
shows that, though both methods are additive-constitutive, they
do not share the same limitations.
Next, the whole database was divided according to the size

of the molecules. Molecular size may be specified in a number
of ways (e.g., by molecular weight, number of atoms, number
of non-hydrogen atoms). All three criteria led to similar results.
Results shown in Tables 5 and 6 (for training and test sets)
used the total number of atoms as the criterion for classifying

the database. Figure 4 shows a comparative histogram plot of
rms deviations for molecules of different sizes using the two
methods. Clearly, the CLOGP method is superior for molecules
with very small size, i.e., about 20 atoms or less. The two
methods were very similar in performance for molecules in the
range of 21-45 atoms. For molecules with over 45 atoms, the
ALOGP method outperformed CLOGP. The statistics in the
training set and the test set were very similar. Importantly, both
methods lead to gradually weaker predictions as the size of the
molecule becomes larger, as evident from Figure 4. This figure
shows that the largest rms deviations were obtained when
molecules with over 60 atoms were considered. This shows
the limits of the additivity approximation inherent in both
methods. Further improvements in these methods, therefore,
should include corrections for longer range nonbonded interac-
tions such as intramolecular hydrogen bonding and molecular
flexibility, which tend to be more important for larger molecules.
However, for larger molecules such as polypeptides and proteins,
the additivity assumption is expected to break down, and better
predictions are likely to be obtained by the considerations of
exposed surface area in addition to atom types.

TABLE 6: Comparative Evaluation of ALOGP and CLOGP Methods for Molecules, Classified by the Total Number of Atoms
in the Test Set

atom range method of calc correl coeff rms dev max dev min dev max logP min logP predictiver2 no. of data points

1-15 CLOGP 0.98 0.26 1.44 0.00 4.04 -1.80 0.95 104
ALOGP 0.95 0.39 1.20 0.00 4.04 -1.80 0.89 105

16-20 CLOGP 0.98 0.26 1.30 0.00 4.56 -3.15 0.96 193
ALOGP 0.91 0.51 2.19 0.01 4.56 -3.15 0.83 194

21-25 CLOGP 0.98 0.38 1.82 0.00 7.43 -1.87 0.96 167
ALOGP 0.97 0.52 1.66 0.00 7.43 -1.87 0.93 170

26-30 CLOGP 0.96 0.56 2.50 0.00 5.43 -2.45 0.88 132
ALOGP 0.93 0.58 1.82 0.01 5.43 -2.45 0.87 136

31-35 CLOGP 0.93 0.66 2.73 0.01 4.44 -2.60 0.81 99
ALOGP 0.94 0.51 1.47 0.01 4.44 -2.60 0.88 100

36-40 CLOGP 0.96 0.49 1.35 0.00 6.42 -2.56 0.92 70
ALOGP 0.92 0.71 2.75 0.01 6.42 -3.52 0.84 77

41-50 CLOGP 0.95 0.67 2.11 0.00 6.26 -2.72 0.87 80
ALOGP 0.95 0.60 1.27 0.00 6.26 -2.72 0.90 81

51-60 CLOGP 0.95 0.71 2.04 0.04 5.50 -2.80 0.90 40
ALOGP 0.97 0.53 1.16 0.01 5.50 -2.80 0.94 41

60+ CLOGP 0.89 1.17 3.46 0.01 9.07 -2.80 0.75 32
ALOGP 0.95 0.75 1.83 0.04 9.07 -2.80 0.90 32

TABLE 7: List of the Compounds Having a Predicted and Observed log P Difference Greater than 2.0 by the ALOGP Method

compound logP CLOGP ALOGP ∆c ∆a

1 1-(4-aminobutoxy)-d8-THC 8.38 7.51 6.15 -0.87 -2.23
2 1-nitrosourea, 1-(N-oxo-2,2,6,6,-tetramethylpiperidin-4-yl)-3-glucos-3-yl) 1.87 -2.33 -1.04 -4.20 -2.91
3 phosphonic amide,N,N-diMe-P,P-di-1-pyrrolidinyl 1.88 1.93 -0.19 0.05 -2.07
4 2,4-diNO2-C6H3NHNdC(CN)COOET 4.14 2.89 1.92 -1.25 -2.22
5 Gly-Gly-Gly -2.68 -4.29 -5.53 -1.61 -2.85
6 basagran 2.80 2.80 0.68 0.00 -2.12
7 D8-THC-dimethylheptyl 9.96 9.09 7.48 -0.87 -2.48
8 dibenzodioxin, 1,2,3,7-tetrachloro 8.22 7.31 5.78 -0.91 -2.44
9 dibenzodioxin, 1,2,4-trichloro 7.47 6.71 5.11 -0.76 -2.36
10 methanetricarboxamide, hexamethyl -3.09 -0.99 -0.36 2.10 2.73
11 ketobemidone, isopropyl carbonate 1.72 1.99 3.78 0.27 2.06
12 5′-chlorocyclocytosine -3.10 0.07 3.17
13 ketobemidone, methyl carbonate 0.75 1.16 3.05 0.41 2.30
14 DEF 3.23 3.24 5.87 0.01 2.64
15 dimethyldiethoxysilane 0.61 0.61 2.69 0.00 2.08
16 1-naphthol-3-sulfonic acid -0.18 -0.14 1.83 0.04 2.01
17 quninoline-2-carboxaldehyde,N-phenylguanylhydrazone 0.99 0.99 3.26 0.00 2.27
18 â-keto-ω-hydroxyacylanilide, 2,6-diisopropyl analogue 4.20 4.43 6.20 0.23 2.00
19 xylazine 1.00 1.00 3.27 0.00 2.27
20 2-N,N-dipentylamino-1-phenylethanol hydrochloride 2.86 5.14 4.96 2.29 2.10
21 hexahydropyrimidine, 2-nitromethylene-3-(6-chloropyrid-3-yl) methyl -0.62 0.44 1.46 1.06 2.08
22 triflumizole 1.40 1.59 3.76 0.19 2.36
23 ketobemidone, ethyl carbonate 1.29 1.68 3.40 0.40 2.11
24 1-(2,3,5-tribenzoyl-D-ribofuranosyl)-2-NO2-imidazole 1.19 4.53 4.85 3.34 3.66
25 6-purinethione, 4-carboxyethyl -1.65 -1.10 0.80 0.55 2.45
26 2,6-diisopropylacetanilide,R-diphenylacetyl 3.96 6.30 2.34
27 benzoylacetanilide, 2,6-diisopropyl 2.87 3.20 4.92 0.34 2.05
28 diphenylguanidine -0.05 -0.05 2.58 0.00 2.63
29 pararosaniline -0.21 2.80 3.01
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In most cases studied here using the ALOGP method, the
correlation coefficient and other statistics were closely similar
for the training and test sets. This indicates that the size of the
current database (∼9K compounds) is nearly optimal, and
rederiving the atomic parameters for even bigger databases is
unlikely to improve predictions. o-Hydroxybenzoic acids
(salicylic acid derivatives) ando-hydroxybenzaldehyde consis-
tently showed negative deviation between-0.4 and-1.2 with
the ALOGP method but were better predicted by the CLOGP
method. Intramolecular hydrogen bonds such as those between
the carbon (CdO) and the hydroxyl groups are not represented
or corrected in the ALOGP method, but the CLOGP method
has a hydrogen bonding correction factor. With the ALOGP
predictions somewhat lower negative deviations (between-0.1

and-0.9) were observed among theo-nitrophenols. When the
hydroxyl and carbonyl groups were separated by single bonds,
deviations were both positive and negative, indicating the
hydrogen bonding is less important because of the conforma-
tional entropy associated with the bond rotation. Predictions
with the ALOGP method could be improved with some atom
subclassification, for example, for the carbonyl oxygen and
hydroxyl hydrogen when they are separated by double or
aromatic bonds. In principle, any structural feature causing
systematic deviation can be accounted for in the ALOGPmethod
by introducing new subtypes, avoiding correlated atom types.
Introduction of a new atom class by identifying such structural
features will be statistically more significant than a totally

TABLE 8: List of the Compounds Having Predicted and Observed logP Difference Greater than 2.0 by the CLOGP Method

compound logP CLOGP ALOGP ∆c ∆a

1 podophyllotoxin 2.01 -0.99 2.11 -3.00 0.10
2 morpholinodaunorubicin 2.31 -0.17 1.28 -2.48 -1.03
3 tirapazamine -0.30 -2.67 -0.56 -2.37 -0.26
4 4,6-diiodoresorcyl-1,3-diglucoside -0.25 -2.88 -1.36 -2.64 -1.11
5 guanosine -1.89 -3.90 -2.38 -2.01 -0.49
6 1-acetyl-7-methoxy-N-methylmitosene 2.39 0.31 1.12 -2.08 -1.27
7 azacitidine -2.17 -4.30 -1.83 -2.13 0.34
8 N-acetyl-Ara-C -1.35 -3.43 -2.41 -2.08 -1.06
9 1-nitrosourea, 1-(N-oxo-2,2,6,6-tetramethylpiperidin-4-yl)-3-(glucos-3-yl) 1.87 -2.33 -1.04 -4.20 -2.91
10 1-methyl-2-nitro-5-(CHdN(O)CH3)imidazole 0.04 -2.28 0.30 -2.32 0.26
11 naloxone (5R,9R,13R,14S) 2.09 -0.34 1.45 -2.43 -0.64
12 benzotriazine, 1,4-di-N-oxide-3-amino-7-(2,3-dihydroxy)propoxy -1.10 -4.01 -1.63 -2.91 -0.53
13 benzotriazine, 1,4-di-N-oxide-3-amino-6,7-dimethyl 0.56 -1.72 0.41 -2.28 -0.15
14 morpholinodaunorubicin, 13-dihydro 2.03 -0.40 1.33 -2.43 -0.70
15 2′-deoxyadenosine,N6-acetyl -0.19 -2.43 -1.39 -2.24 -1.20
16 2′-deoxycytidine,N4-benzoyl 0.67 -1.59 0.03 -2.26 -0.64
17 P-nitrophenylmaltoside -1.39 -3.49 -2.19 -2.10 -0.80
18 benzotriazine-1,4-di-N-oxide, 3-amino-6-chloro 0.41 -1.92 0.10 -2.33 -0.31
19 R-dihydrograyanotoxin II 1.51 -0.97 0.48 -2.48 -1.03
20 2-cyanomorpholinodoxorubicin, 12-imino 1.97 -1.74 0.53 -3.71 -1.44
21 2-cyanomorpholinodoxorubicin 1.98 -1.25 0.48 -3.23 -1.50
22 chloralose-â 1.12 -1.17 -0.08 -2.29 -1.20
23 microlenin 1.66 -0.71 2.54 -2.37 0.88
24 benzotriazine, 1,4-di-N-oxide, 3-amino-7-methyl 0.20 -2.17 -0.08 -2.37 -0.28
25 strychnine, bromthymol blue salt 1.93 -0.30 1.15 -2.23 -0.78
26 sucrose -3.70 -5.72 -4.31 -2.02 -0.61
27 ouabagenin -0.02 -4.60 -1.31 -4.58 -1.29
28 dithianon 2.84 -0.13 3.49 -2.97 0.65
29 gibberellin-R-3,2-R 0.24 -2.04 0.44 -2.28 0.20
30 cytidine,N4-benzoyl 0.30 -1.94 -0.74 -2.24 -1.04
31 benzotriazine-1,4-di-N-oxide, 3-amino-7-methoxy 0.00 -2.31 -0.58 -2.31 -0.58
32 morpholinodoxorubicin, 12-imino 1.80 -1.19 0.67 -2.99 -1.13
33 3-nitrotriazole, 1-(N-methoxypropyl)thioacetamido 0.63 -1.38 0.10 -2.02 -0.53
34 2-cyanomorpholinodaunorubicin 2.59 -0.73 1.15 -3.32 -1.44
35 morpholinoadriamycin 1.73 -0.69 0.61 -2.42 -1.12
36 2-cyanomorpholinodoxorubicin, 13-dihydro 1.56 -2.10 0.31 -3.66 -1.25
37 2-aminostrychnine 0.54 -1.53 0.40 -2.07 -0.14
38 2-nitrostrychnine 1.61 -0.56 1.04 -2.17 -0.57
39 decitabine -1.89 -3.95 -1.06 -2.06 0.83
40 benzotriazine, 1,4-di-N-oxide, 3-acetylamino -0.60 -2.73 -0.70 -2.14 -0.10
41 methanetricarboxamide, hexamethyl -3.09 -0.99 -0.36 2.10 2.73
42 naphthalene, octachloro 6.42 8.54 8.05 2.12 1.63
43 Leu-Leu-Leu-Val -0.51 1.67 0.01 2.18 0.52
44 Ile-Tyr-Ile-Val -1.09 0.97 0.23 2.06 1.32
45 acetylcholine bromide -3.61 -1.22 -3.61 2.39 0.00
46 Ile-Ile-Val-Val -1.41 1.14 -0.24 2.55 1.17
47 MT-124 4.33 6.92 5.56 2.59 1.23
48 propaquizafop 4.60 7.04 4.24 2.44 -0.36
49 N-benzylcinchonine chloride -0.55 2.16 -0.06 2.71 0.49
50 Pro-Leu-Leu-Leu -1.06 1.19 -0.51 2.25 0.55
51 5,5-dimethyl-3-(piperidin-1-yl)-2-cyclohexen-1-one 0.83 3.01 2.40 2.18 1.57
52 leucinylvalinylvaline -2.10 -0.05 -1.15 2.05 0.95
53 2-N,N-dipentylamino-1-phenylethanol hydrochloride 2.86 5.14 4.96 2.29 2.10
54 Ile-Ala-Ala-Ile -2.82 -0.71 -1.93 2.11 0.89
55 Val-Pro-Val-Leu -1.91 0.50 -1.29 2.40 0.62
56 leucinylisoleucinylisoleucine -1.11 1.00 -0.24 2.11 0.87
57 Leu-Pro-Leu-Leu -0.92 1.55 -0.51 2.47 0.41
58 Leu-Leu-Pro-Leu -1.00 1.55 -0.51 2.55 0.49
59 Leu-Leu-Leu-Pro -1.18 1.39 -0.51 2.57 0.67
60 5,5-Dibenzo-30-Crown-10-Ether, di-(m-tert-butyl) 3.32 5.87 5.25 2.55 1.93
61 1-(2,3,5-tribenzoyl-D-ribofuranosyl)-2-NO2-imidazole 1.19 4.53 4.85 3.34 3.66
62 H8-pyrazino[2′,1′:6,1]pyrid[3,4-b]indol, benzamidoethyl 1.52 3.55 3.19 2.03 1.67
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different atom classification scheme with a considerably larger
number of atom types.
The ALOGP method is intrinsically atomistic, and hence, it

is useful for drug design in many ways. Some examples include
the estimation of local or overall hydrophobicity in a molecule
for physicochemical property-based 2D- or 3D-QSAR,16 estima-
tion of molecular similarity,11molecular mimicry,32,33automated
and semiautomated pharmacophore modeling,34,35evaluation of
hydrophobic potential surfaces,20 and scoring protein-ligand
interactions.22 “Atomic” parameters were also derived on the
basis of the CLOGP estimates of lipophilicity. These parameters
have been used in deriving lipophilicity fields36,37and 3D-QSAR
models38 and in empirically scoring ligand-receptor interac-
tions.36,39 Thus, “atomization” of lipophilicity is a conceptual
tool that finds increasing applicability in molecular design.

Concluding Remarks

There have been reports in the literature12,40questioning the
validity of fragment-atom-based approaches for logP prediction.
High correlations (∼0.9 or higher) obtained in the present study
clearly demonstrate the validity of these approaches in the case
of small organic molecules, indicating that the long range
interactions are probably not very important for predicting log
P in a majority of cases of small molecules. The CLOGP
method showed marginally better performance when all types
of molecules are considered as a whole. Despite relatively fewer
variables used in the ALOGP method, its performance is at least
as good as the CLOGP method for a majority of the compound
subclasses and is very close to the CLOGP method in overall
performance.
The main limitation of the CLOGP method is that it cannot

be applied to a considerable portion of the database, due to the
presence of undefined fragments. In contrast, the ALOGP
method is applicable to most neutral organic compounds and
selective charged compounds in the dataset. The CLOGP
method uses a large number of parameters and correction factors.
To develop these parameters, molecules with about 20 atoms
or less were often considered. Thus, the CLOGP method gives
much better performance for molecules with about 20 atoms or
fewer. However, as larger molecules (with 40-60 atoms or
more) are considered, predictions of this method become more
error-prone with rms deviations of greater than 1 log unit for
some molecules with over 60 atoms. The ALOGPmethod gives
a stable performance in all classes of organic compounds tested,
with much less variability in the statistical quality of results
among different subclasses. The CLOGP method gives much

larger deviations in the cases of alcohols, primary amines,
unblocked peptides and nucleosides.
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